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Figure 1: Our method synthesizes semantic human motion with natural transition using free-form sequential texts. The
skeleton motion can be easily transferred to any character. The character used for demonstration is from Mixamo [1].

Abstract

The intelligent synthesis/generation of daily-life motion
sequences is fundamental and urgently needed for many
VR/metaverse-related applications. However, existing ap-
proaches commonly focus on monotonic motion generation
(e.g., walking, jumping, etc.) based on single instruction-
like text, which is still not intelligent enough and can’t
meet practical demands. To this end, we propose a cohe-
sive human motion sequence synthesis framework based on
free-form sequential texts while ensuring semantic connec-
tion and natural transitions between adjacent motions. At
the technical level, we explore the local-to-global seman-
tic features of previous and current texts to extract rele-
vant information. This information is used to guide the
framework in understanding the semantics of the current
moment. Moreover, we propose learnable tokens to adap-
tively learn the influence range of the previous motions to-
wards natural transitions. These tokens can be trained to
encode the relevant information into well-designed transi-
tion loss. To demonstrate the efficacy of our method, we
conduct extensive experiments and comprehensive evalua-
tions on the public dataset as well as a new dataset pro-
duced by us. All the experiments confirm that our method
outperforms the state-of-the-art methods in terms of seman-
tic matching, realism, and transition fluency. Our project is
public available. https://druthrie.github.io/
sequential-texts-to-motion/
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1. Introduction and Motivation

Human motion synthesis is fundamental for numer-
ous application, especially for virtual reality, games, and
metaverse-related applications [10, 19, 5, 3, 36, 15, 22, 20,
24], of which, it is in high demand to accurately control
the digital human motion with natural language. Existing
approaches commonly focus on monotonic motion synthe-
sis/generation based on single instruction-like text descrip-
tion. However, practical applications usually require digi-
tal humans to respond to multiple rounds of sustainable in-
teractions, wherein they can continuously generate reason-
able responses to the sequential texts. Therefore, given a set
of free-form sequential texts, we aim to synthesize a cohe-
sive human motion sequence. Namely, the animation clips
should be consistent with the ongoing text descriptions, and
the whole motion sequence should have smooth semantic
connection and natural transitions.

At present, sequential texts-driven motion synthesis has
not been well studied, mainly due to lacking long-term
continuous motion datasets with accompanying free-form
text descriptions. Recently, TEACH [6] first attempts to
address this problem by proposing a dataset (we refer to
it as BABEL-TEACH). Each item in the BABEL-TEACH
dataset contains two adjacent text-motion pairs. However,
TEACH [6] builds on the one-time method TEMOS [29],
wherein the limited 5-frame motion is added to encode to-
gether. However, it does not consider the potential benefits
of previous text information. In practice, previous texts can
provide extra and more accurate semantic information for
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current motion synthesis. Therefore, global semantic needs
to be extracted from the previous text and the local seman-
tics from the current text, and then fuses the semantics to
guide the semantic understanding at each moment.

Besides, there are still two main challenges. Firstly, the
semantic relationship between adjacent texts is largely over-
looked in previous research. For example, when synthesiz-
ing a motion for the current text “touching the face with
left hand,” the previous text context should be considered.
Specifically, if the previous text was “sitting on a chair,”
the synthesized motion should depict a person sitting and
touching face with left hand (shown in Fig. 2); if the previ-
ous text was “a person kicks a ball with right foot,” the mo-
tion should show a standing person touching face with left
hand. This requires a more comprehensive understanding
about the context and semantic relationships between the
texts. Secondly, existing methods tend to abrupt transitions
between adjacent motions when multiple motions are syn-
thesized separately and stitched together. We aim to address
this issue by seamlessly blending the synthesized motions.
It should intelligently capture the temporal and spatial con-
tinuity between the motions to ensure a more natural and
coherent sequence of motions.

Considering the easy scalability of autoregressive meth-
ods, we should extend previous autoregressive single text-
driven motion synthesis methods to multiple motions in-
volved in motion sequence synthesis. We observe that a
similar human body posture can be achieved by transferring
the end features of the previous motion to the next motion,
although this is not always entirely consistent. This sug-
gests that previous motion information should be leveraged
more effectively and sufficiently rather than being adopted
straightforwardly. Therefore, we plan to introduce a transi-
tion reasoning module that adaptively learns attention score
from the previous motion information and infers accurate
motion features at the transition, making the transition be-
tween adjacent motions more natural and smooth.

To this end, we create a new dataset with much longer-
term motions (2-5 times longer) based on a synthetic
method, and the corresponding text descriptions are more
abundant. We conduct experiments on both BABEL-
TEACH [6] dataset and our sequential texts described mo-
tion (STDM) dataset. The results demonstrate that our
method outperforms existing methods in terms of seman-
tic matching, realism, and transition fluency. Specially, the
salient contributions can be summarized as follows.

• We propose a cohesive motions synthesis framework
using sequential texts as inputs. The framework can
integrate previous text information to obtain semantic
features and adaptively select valid previous motion in-
formation to guide the current motion synthesis.

• We design a local-to-global (L2G) semantic fusion
module to extract accurate contextual information. It

Figure 2: Top row: Motion synthesis corresponding to se-
quential texts by our method. Bottom row: Motion synthe-
sis corresponding to single text by T2M [11].

can well take into account global-context information
from the previous text to infer the current moment’s
text meaning to guide the semantics-consistent motion
synthesis.

• We introduce a transition reasoning module to adap-
tively select motion snippet from previous motion in-
formation to make the synthesized motion natural and
smooth w.r.t the previous, wherein a well-defined tran-
sition loss is employed to further constrain the fluency
of the transitions.

• We create a new sequential texts described motion
(STDM) dataset, which involves more extended mo-
tion frames and more diverse text descriptions than the
existing dataset.

2. Related Work
We briefly introduce the related works of human mo-

tion synthesis considering semantic control, including sin-
gle text driven motion synthesis and sequential texts driven
motion synthesis.

Single text driven motion synthesis. The motion syn-
thesis from text began with the synthesized motion from ac-
tion labels, but this approach was limited in covering most
human motions [21, 27, 35, 38, 28, 12, 28, 7]. Later, re-
searchers [4, 9, 34] focused on synthesizing motion from
complex free-form text descriptions, with early work gen-
erating single, deterministic motions from text. Recent
works have aimed to improve the diversity and details of
the synthesized motion. For example, TEMOS [29] and
T2M [11] utilized VAE architecture to synthesize diverse
motions from the same texts. The main difference between
them is that the former utilized Transformer architecture to
synthesize all moment motions at once, while the latter uti-
lized GRU architecture to synthesize every moment motion
auto-regressively. To capture more detailed information in
the text, TM2T [14] utilized VQVAE-based motion markers
to provide a fair environment when considering motion and
text signals, and utilized motion-to-text analysis module to
strengthen the constraints on text-to-motion synthesis. With
the successful application of the diffusion model in image
generation, MotionDiffuse [37] utilized the diffusion model



Figure 3: Method Overview: Our model takes sequential texts as input. In the local-to-global (L2G) semantic fusion module,
the previous text’s global features and the current text’s local features are fused and extracted. In the transition reasoning
module, the motion snippet code at the transition of adjacent motion (c0start and c1start) is deduced from the previous motion.
Input the gate snippet code gt and the semantic text feature F t

sem to synthesize the motion snippet code ĉti. The transition
loss further limits the fluency of the transition with the previous motion.

to simulate text driven conditional human motion synthe-
sis, which can better respond to fine-grained instructions of
body parts. FLAME [18] utilized transformer-based diffu-
sion model architecture to synthesize human motion, and
it can allow editing frames and joints without fine-tuning.
Its editing ability can be extended to motion prediction or
in-between tasks. Although the diffusion model improves
the quality of the synthesized motion, its inference speed is
relatively slow, so it is unsuitable for real-time applications.

Sequential texts driven motion synthesis. Synthesiz-
ing motion sequences from sequential texts is challenging
due to the limited availability of long-term continuous mo-
tions datasets with text descriptions. Previous works Ac-
tion2video [13] realized the transition between actions by
changing the input action label type in an autoregressive
synthesizer. Yet, they only conducted experiments on a
limited number of action labels in three datasets: NTU-
RGBD [33], CMU [2], and humanACT12 [12]. Mao et
al. [26] proposed a weakly-supervised action-driven motion
prediction method, but they only used 20 action categories
with clear transitions in BABEL [32] to synthesize the fol-
lowing motion and transition. Based on the existing BA-
BEL dataset [32], TEACH [6] proposed a new dataset, in
which each data consisted of two adjacent text descriptions
and motion sequences. The model of TEACH [6] encoded
five previous motion frames using TEMOS [29], every sin-
gle motion sequence was synthesized simultaneously, and
adjacent motion sequences were auto-regressively synthe-
sized. Our work builds on this by proposing a cohesive hu-
man motion sequence synthesis framework based on free-
form sequential texts, ensuring semantic connection and
natural transitions between adjacent motions.

3. Our Approach
3.1. Method Overview

The overall pipeline of the proposed model is shown in
Fig. 3. The temporal VAE and motion autoencoder used
in the model are similar to those used in the T2M model,
wherein it is employed to encode the motion sequence into
a motion snippet code sequence and reconstruct the motion
sequence with a decoder. To take sequential texts as input
and ensure semantically coherent synthesized motions, a
local-to-global (L2G) semantic fusion module is introduced
(Sec. 3.2). This module guides learning accurate seman-
tic features from the input texts at each moment, including
historical text information. To ensure smooth and natural
transitions between adjacent motions, a transition reason-
ing module is introduced (Sec. 3.3). This module dynam-
ically deduces the motion snippet code during transition
based on previous motion information, which can help the
model generate realistic and coherent transitions. Addition-
ally, a transition loss is proposed to enhance the smoothness
of the transition motion (Sec. 3.4). Overall, the proposed
pipeline combines several modules and techniques to gen-
erate realistic and semantically coherent motion sequences
from sequential texts input. The model can generate smooth
transitions between motions, and can adaptively learn the
influence range of previous motions to further improve the
quality of the synthesized motion sequences.

Preliminaries. Our method aims to take free-
form sequential texts S = (S1,S2, · · · ,Sn) as in-
put, e.g., S=(“salute with the left hand”, “salute with
the right hand”, “sit on the chair”, “crawl”), and
outputs corresponding human motion sequences M =



(M1,M2, · · · ,Mn). The transition between adjacent mo-
tions should be natural and smooth, and the synthesized
motion should reflect the semantic information of previous
texts. The data format is consistent with HumanML3D [11]
dataset, including the root angular velocity along the Y-axis,
the root linear velocity on the XZ-plane, the root height, the
local joints positions, velocities, and rotations [40] in root
space, while the motions follow the skeleton structure of
SMPL [25] with 22 joints. Each moment in our model rep-
resents 4 frames.

3.2. Local-to-global Semantic Fusion Module

To synthesize motion that accurately matches the seman-
tics of sequential texts, our model relies on accurately ex-
tracting text features at each moment to guide the synthesis
process. As the motion we synthesize is based on sequential
texts, the current motion is determined not only by the cur-
rent text semantics but also by previous text semantics. To
capture the temporal clues, we encode both the previous and
current text, and use an attention mechanism to extract text
features that integrate the previous text semantics at each
moment (shown in Fig. 4). For previous texts, we use a pre-
trained CLIP [31] text encoder to extract global features of
previous texts. In order to make the features more suitable
for our task in the process of training, linear projector is
used to extract features further. The global features from
the previous texts are expressed as:

Gpre = f(CLIPtext(Si−1)). (1)

It is difficult for the CLIP text encoder to extract the lo-
cal features of the text, motion synthesis of each moment
requires local text semantic guidance, so we employ a Bi-
GRU-based text encoder, similar to T2M [11], to obtain the
local features L1:m from the current text. To capture accu-
rate text semantic features at the arbitrary frames, we use
an attention mechanism, wherein the key K(L) and value
V(L) of attention are the local features of the current text.
Since the semantic information of the previous text is re-
quired for guidance at the beginning of the currently syn-
thesizing motion, we use the global features of the previous
text as the initial query Q(G). At subsequent moments, the
motion snippet code generator in temporal VAE provides
the queries Q(L). This can be expressed mathematically
as:

Q(G) = GpreWQ,Q(L) = ht−1WQ,

K(L) = L1:mWK ,V(L) = L1:mWV ,

Ft
sem = f(

Q(G/L)K(L)T√
dsem

)V(L),

(2)

where Wk,WV ∈ Rdw×dsem and WQ ∈ Rdh×dsem are
trainable weights;dh, dw and dsem are the number of chan-
nels in hidden unit ht−1, current text feature L1:m and se-
mantic fusion attention layer, respectively. ht is the hidden

Figure 4: Local-to-global semantic fusion module: After
extracting the global feature Gpre from the previous texts
and the local features L1:m from the current text, feature
fusion is performed to obtain the accurate semantic feature
Ft

sem of the current text at moment t.

unit generated by the motion snippet code generator at each
moment and h0 is obtained from Gpre. Ft

sem is the text
semantic feature at moment t.

3.3. Transition Reasoning Module

When synthesizing a new motion, the starting pose is in-
fluenced by the ending pose of the previous motion. Graft-
ing the end motion snippet code of the previous motion to
the start moment of the current motion can produce similar
human poses during the transition. However, the transition
between the two motions is still unnatural and abrupt. To
address this, we introduce a learnable start motion snippet
code token ctoken and utilize it along with the previous mo-
tion snippet code sequence in a transformer encoder. The
output of the token position is used as the start motion snip-
pet code cstart for the current motion, allowing the model to
learn the range and weight of the previous motions (shown
in Fig. 5). Additionally, the length of the current motion
affected by the previous motion information needs to be de-
termined. Through experimentation, we obverse that the
best performance is achieved by reasoning the first two mo-
tion snippet codes (c0start and c1start) of the current motion
from the previous motions. The verification experiment is
in Sec. 4.5. The mathematical expression is as:

c0start, c
1
start = Transformer(ĉi−1, c

0
token, c

1
token).

(3)
As shown by the transition gate in Fig. 3, when synthe-

sizing the motion snippet codes of the first two moments, we
choose the motion snippet codes (c0start and c1start) inferred
from the previous motion as gate snippet code gt. From the
third moment, the motion snippet code ĉt−1 from the previ-



Figure 5: Transition reasoning module: Given the previ-
ous texts to get the previous synthesized motion sequence
M̂i−1 and motion snippet codes ĉi−1, we use two learnable
tokens (c0token and c1token) to learn the previous motion in-
formation that needs attention, so as to obtain the motion
snippet codes at the starting moment of the current motion
(c0start and c1start).

ous moment is used, which is synthesized autoregressively.
For gate snippet code gt, the mathematical expression is as:

gt =

c0start t = 1
c1start t = 2
ĉt−1 t ≥ 3

(4)

When synthesizing the motion based on the first text S1 of
the sequential texts, we set the previous texts as the default
text S0=“start”, and the starting snippet code c0start is ob-
tained from the mean pose.

3.4. Transition Loss & Total Loss

We conduct a statistical analysis of the dataset and find
that the motion gap (L1 distance) of almost all adjacent
frames is less than 0.1. Inspired by this, we design a tran-
sition loss LTrans to reduce the motion gap between the
adjacent frames and avoid abrupt transition. The represen-
tation of the LTrans is

LTrans = ∥M̂1
i − M̂

Ti−1

i−1 ∥1. (5)

The final loss function of our model consists of 4 parts:
motion snippet code reconstruction loss Lcode

rec , motion re-
construction loss Lmot

rec , KL loss LKL of prior distribution
and posterior distribution in temporal VAE, and the tran-
sition loss LTrans. The λcode, λmot, λKL, λTrans are the

Dataset Quantity Duration Vocab.
STDM 5289 20.02 h 2455

BABEL-TEACH[6] 16266 21.86 h 1037

Table 1: Comparison of datasets: STDM dataset has
longer-term frames within a single motion, and the text is
more abundant.

corresponding weights of the losses.

L = λcodeLcode
rec +λmotLmot

rec +λKLLKL+λTransLTrans.
(6)

4. Experiments
First, we introduce our STDM dataset (Sec. 4.1), eval-

uation metrics (Sec. 4.2), and then conduct quantitative
(Sec. 4.3) and qualitative (Sec. 4.6) evaluations. We carry
out an ablation study (Sec. 4.4) to prove the effective-
ness of our proposed modules and analyze the parameters
(Sec. 4.5).

4.1. STDM Dataset

Each text-motion pair in most existing human motion
datasets [30, 17, 23, 39, 12, 8] is independent of the other,
and does not contain adjacent text-motion pairs. In a recent
study, TEACH [6] used the BABEL [32] dataset to obtain
a BABEL-TEACH dataset containing two adjacent text-
motion pairs, which is consistent with our research goal.

To obtain adequate motion sequences, we synthesize se-
quential texts and motion sequences by modifying the ex-
isting single text driven motion synthesis method from the
viewpoint of data generation instead of using a mocap de-
vice. By randomly selecting and annotating texts from
a large pool, we create sequential text fed into our im-
proved T2M [11], generating motion sequences. Based on
T2M [11], we find that the motion sequences decoded by
the same motion snippet code are similar. Our approach
diverges from T2M: In the inference stage, instead of us-
ing a fixed mean pose, we use snippet codes from the last
eight frames of the previous motion, ensuring smoother and
more natural transitions. Our experiment results show that
the motion sequences synthesized in this way are similar
in transition. Since the motion generated by the generation
model may not match the semantics of the input text and
the transition may not be smooth, we manually remove data
with poor transitions and correct erroneous texts to main-
tain the quality of our STDM dataset. After filtering, we get
5289 pairs containing two adjacent text-motion. Our dataset
is collected under the same structure as HumanML3D [11].

Compared with the BABEL-TEACH [6] dataset, STDM
has longer-term motion frames, with a single motion se-
quence ranging from 2 to 10 seconds, while most BABEL-
TEACH [6] data is less than 3 seconds. However, the text



Figure 6: STDM Dataset: Two examples in the STDM dataset, which involves more extended motion frames and more
diverse text descriptions than the BABEL-TEACH [6] dataset. Blue traces represent the digital human’s trajectory.

descriptions in BABEL-TEACH [6] usually describe only
one action, such as “walk forward”. The text descriptions
in the STDM are more abundant, such as “a person raises
his right hand and walks forward”. A detailed comparison
of the two datasets can be found in Tab. 1. Fig. 6 shows two
examples of our STDM dataset.

4.2. Evaluation Metrics

In order to evaluate the quality of the synthesized motion
sequence, we use the feature extractor proposed by Guo et
al. [11] to extract the features of text and motion. This fea-
ture extractor is trained with contrast loss [16], which can
make the matched text-motion pairs produce similar fea-
ture vectors. Therefore, the feature extractor can measure
whether the text and motion sequence match. We combine
two adjacent text-motion pairs into one to train the feature
extractor. We use the same evaluation metrics as T2M [11].
The metrics are described in the supplementary materials.

To demonstrate the fluency of different methods when
transiting between adjacent motions, we add a metric to
evaluate the fluency of transition, by calculating the distance
between adjacent frames of two adjacent motion sequences.
For transition fluency, the mathematical expression is as:

F =

N∑
i=1

∥MT1
i1 −M1

i2∥1. (7)

Here, we calculate the average transition distance (L1

distance) of the motion sequence synthesized by N ad-
jacent text pairs. For the i-th adjacent text pair, the
synthesized adjacent motion sequence pair is Mi1 =
(M1

i1,M
2
i1, ...,M

T1
i1 ) and Mi2 = (M1

i2,M
2
i2, ...,M

T2
i2 ).

4.3. Quantitative Evaluation

Baselines. We compare our method with T2M [11],
our two variants T2M-Joint and Complusion-Code, and
TEACH [6]. For T2M, we input a single text, output a
single motion, and align the root coordinates of the last
frame of the previous motion with the root coordinates of
the first frame of the next motion. For T2M-Joint, we keep
the T2M model structure and train the model by combining
two adjacent texts with commas as input. For Complusion-
Code, based on the T2M [11], the last motion snippet code
of the previous motion is used as the start motion snip-
pet code of the next motion during training (Unlike the
STDM dataset generation method, the dataset generation
only uses the snippet codes of previous motions in the infer-
ence phase. Complusion-Code also uses the snippet codes
of previous motions in the training phase). For TEACH [6],
we compared two versions using spherical linear interpola-
tion (Slerp) and not using Slerp, respectively. Slerp opera-
tion is unrelated to the TEACH [6] model and is simply a
way of post-processing synthesized data.

Tab. 2 and Tab. 3 show our quantitative comparison
results with other baselines on BABEL-TEACH [6] and
STDM datasets. We divide the training, testing, and vali-
dation sets according to the ratio of 0.8 : 0.15 : 0.05. For
a fair comparison, we conduct 20 experiments and show
the values with confidence in the 95% range. From the re-
sults, our method outperforms all other methods, especially
in the transition fluency metric, which is important for syn-
thesizing natural and smooth transition motion. T2M [11]
can only synthesize a single motion per inference, and there
is no connection between adjacent motions, so it performs
poorly in all indicators. Because our testing data are com-
posed of two adjacent texts, the T2M-Joint method per-
forms similarly to the real data regarding transition fluency



Methods R Precision↑ FID↓ MultiModal Dist↓ Transition Fluency↓Top 1 Top 2 Top 3

Real motions 0.560±0.002 0.750±0.003 0.834±0.002 0.001±0.000 3.448±0.001 -

T2M [11] 0.376±0.003 0.543±0.002 0.647±0.003 6.890±0.081 5.218±0.010 1.108±0.004

T2M-Joint 0.373±0.004 0.534±0.003 0.640±0.003 2.727±0.032 4.983±0.011 -
Compulsion-Code 0.432±0.003 0.613±0.004 0.717±0.003 3.726±0.068 4.612±0.023 0.348±0.002

TEACH (no Slerp) [6] 0.573±0.002 0.756±0.003 0.842±0.002 2.263±0.055 3.487±0.010 0.577±0.003

TEACH (Slerp) [6] 0.563±0.003 0.750±0.003 0.839±0.003 2.240
:::

±0.053 3.526±0.011 0.118±0.001

Ours 0.542
:::

±0.003 0.728
:::

±0.003 0.818
:::

±0.003 1.628±0.031 3.662
:::

±0.010 0.177
:::

±0.001

Ours (Slerp) 0.519±0.004 0.705±0.004 0.803±0.003 1.548±0.024 3.797±0.012 0.036±0.000

Table 2: Quantitative evaluation on testing data of BABEL-TEACH: ± indicates 95% confidence interval, ↑ and ↓ re-
spectively denotes better performance with larger or lower value. Bold indicates the optimal result, the underscore represents
the suboptimal result, while

::::
wave

::::
line refers to the third best. The results show that the motion synthesized by our model

outperforms other baselines in terms of semantic matching, transition fluency, and realism.

Methods R Precision↑ FID↓ MultiModal Dist↓ Transition Fluency↓Top 1 Top 2 Top 3

Real motions 0.322±0.004 0.505±0.005 0.625±0.006 0.014±0.002 3.461±0.005 0.454±0.000

T2M [11] 0.322±0.006 0.493±0.005 0.614±0.005 1.389±0.049 3.500±0.009 0.639±0.003

T2M-Joint 0.304±0.005 0.488±0.006 0.613±0.005 0.744±0.042 3.492±0.011 -
Compulsion-Code 0.285±0.007 0.450±0.006 0.572±0.006 3.146±0.080 3.806±0.017 0.330±0.003

TEACH (no Slerp) [6] 0.318±0.006 0.505
:::

±0.005 0.634±0.005 1.414±0.055 3.483
:::

±0.012 0.246±0.002

TEACH (Slerp) [6] 0.326±0.004 0.504±0.005 0.631±0.006 1.416±0.054 3.487±0.013 0.049±0.000

Ours 0.328±0.006 0.510±0.006 0.633
:::

±0.005 1.085±0.063 3.441±0.017 0.109
:::

±0.001

Ours (Slerp) 0.325
:::

±0.007 0.515±0.007 0.637±0.005 1.134
:::

±0.059 3.440±0.013 0.022±0.000

Table 3: Quantitative evaluation on the testing data of STDM: The results show that the motion synthesized by our model
outperforms other baselines in terms of semantic matching, transition fluency, and realism.

(less than 0.1). However, when the input text consists of
more than two sentences, the T2M-Joint method cannot
guarantee transition fluency. Because Compulsion-Code
uses the end motion snippet code of the previous motion as
the start snippet code of the next motion, the performance
of transition fluency is better than T2M [11], but it is still
not as good as ours. Although TEACH [6] is slightly better
than ours in R Precision and MultiModal Distance on the
BABEL-TEACH [6] dataset, as shown in Tab. 2, its tran-
sition fluency is not as good as ours, we can obtain tran-
sitional and natural motion sequences without Slerp opera-
tion, so our method is better than TEACH [6] in a compre-
hensive evaluation. Although the synthetic STDM dataset
is less natural than actual mocap data in transition fluency,
we find that our method can compensate for the defects
of the training data after training. In terms of transition
fluency, the results synthesized by our method outperform
the ground truth of the testing data. This further verifies
the effectiveness of our method in synthesizing natural and
smooth transition motions.

User study. We randomly select 50 texts from the test-
ing data and arrange 3 to 5 texts together to form a set of
sequential texts. Some text combinations are not present
in the dataset to test the motion generation effect of each
model for text combinations not in the dataset. The syn-

thesized motions based on these sequential text groups are
randomly shuffled and presented using different methods.
Users are required to score synthetic motions from the fol-
lowing three aspects: (1) Matching degree: the degree of
semantic matching between the motion and the text; (2)
Transition fluency: the natural degree of transition between
adjacent motions; (3) Realism: how realistic the motion is.
The result is shown in Fig. 7.

4.4. Ablation Study

In order to illustrate the influence of the modules and
training strategies we introduced on the overall model, we
carried out the ablation experiment. The results are shown
in Tab. 4.

The first experiment is to remove the transition reason-
ing module. We set the skeleton to mean pose to initialize
the motion snippet code at the start moment. However, the
model does not know the human posture at the beginning,
so it greatly reduces transition fluency (value increased by
0.417). The experiment results show that the performance
of the model will decline without the transition reasoning
module because it does not aware of the information of pre-
vious motion when the model synthesizes the motion se-
quence of the current text, even though the model can syn-
thesize motion sequences that match the semantics of the



Methods R Precision↑ FID↓ MultiModal Dist↓ Transition Fluency↓Top 1 Top 2 Top 3

Real motions 0.561±0.003 0.747±0.003 0.836±0.002 0.002±0.000 3.449±0.002 -

w/o Transition reasoning module 0.535±0.004 0.713±0.003 0.805±0.003 2.190±0.038 3.719±0.013 0.594±0.003

w/o L2G semantic fusion module 0.440±0.003 0.621±0.003 0.720±0.003 4.592±0.071 4.593±0.013 0.151±0.001

w/o Transition loss 0.525±0.004 0.706±0.004 0.801±0.002 1.766±0.036 3.797±0.011 0.293±0.001

w/o Segmented training strategy 0.500±0.002 0.684±0.004 0.783±0.004 2.164±0.038 4.041±0.013 0.328±0.002

Ours 0.542±0.003 0.726±0.003 0.817±0.002 1.588±0.030 3.655±0.013 0.177±0.001

Table 4: Ablation study: The results show that the transition reasoning module has the most significant impact on transition
fluency, the L2G semantic fusion module has the most significant impact on R Precision, FID, and MultiModel Distance,
which represent semantic matching and realism, and the transition loss and segmentation training strategy have a certain
influence on all indicators.

Numbers of snippet code R Precision↑ FID↓ MultiModal Dist↓ Transition Fluency↓Top 1 Top 2 Top 3

Real motions 0.561±0.003 0.750±0.002 0.834±0.002 0.002±0.000 3.449±0.001 -

1 snippet code 0.517±0.003 0.693±0.004 0.786±0.004 2.027±0.043 3.845±0.014 0.173±0.001

2 snippet codes 0.540±0.003 0.725±0.003 0.816±0.002 1.602±0.026 3.662±0.011 0.177±0.001

3 snippet codes 0.522±0.004 0.702±0.003 0.796±0.002 2.050±0.038 3.838±0.015 0.175±0.001

5 snippet codes 0.504±0.003 0.687±0.004 0.785±0.003 1.781±0.029 3.913±0.013 0.213±0.001

Table 5: Parameter analysis of transition reasoning module: We infer the initial motion snippet code of the current motion
sequence from the previous motion and determine the optimal number of the inference code through experiments. The result
shows that inferring the first two codes of current motion from the previous motion work best.

Figure 7: User study: We invite 45 users to score the re-
sults of our comparative experiments, and the color bars in
the figure indicate the percentage of the scores. The results
show that our method outperforms other baselines in terms
of semantic matching, transition fluency, and realism.

current text.
The second experiment is to remove the L2G semantic

fusion module. We only encode the features of the current
text at each moment without considering the previous text.
The experiment results show that the model’s performances
on R Precision, FID, and MultiModal Distance decrease
significantly after removing the L2G semantic fusion mod-
ule, indicating that previous text information is essential in
synthesizing motion sequences that match context seman-
tics. Although there is a slight improvement in the metric of

transition fluency after the removal, the gap between them
can not be observed from the naked eye. With the L2G se-
mantic fusion module, our model shows better competence
in evaluating the implicit relationship between current and
previous text.

The third experiment is to remove the transition loss. The
experimental results show that after removing the transition
loss, the model’s performances in all indicators have de-
creased, indicating that adding transition loss will guide the
model to learn more semantic matching and transitional nat-
ural motion.

The fourth experiment does not use the segmented train-
ing strategy (explained in the supplementary file). The spe-
cific approach is that all motion sequences are extended
to the maximum length (196 frames) with 0 in the train-
ing strategy. The experimental results show that when the
segmented training strategy is not used, the performance
of each indicator decreases, indicating that the segmented
training strategy can make the model learn more thoroughly.

4.5. Parameter Analysis

In the transition reasoning module, we verify through ex-
periments that we need to infer the number of motion snip-
pet codes from the previous motions at the current initial
stage. As shown in Tab. 5, the reasoning motion snippet
code number of 1, 2, 3, and 5 are compared. The experiment
results show that two motion snippet codes at the beginning
of reasoning are optimal because the model can not fully
capture the influence of previous motion information by re-
ducing motion snippets inferred from previous motions. At



Figure 8: Qualitative evaluation: Continuously inputting four texts to show the visual results of our method and other
baseline methods, except for the two frames between adjacent motions, the rest only show the keyframes. The results show
that the motion synthesized by our method is the best in terms of semantic matching, transition fluency, and realism. More
results are in the supplementary file.

the same time, the model will introduce too much previous
motion information into the current motion if increasing the
motion snippets inferred from previous motions.

4.6. Qualitative Evaluation
We make a qualitative comparison with the baselines, as

shown in Fig. 8, our synthesized motion is the most natural
in transition and nicely matches the semantics of the texts.
Transition in T2M [11] is most evident in adjacent motion.
T2M-Joint cannot fully express the content of the text de-
scription. When the input sequential texts contain more than
two sentences, noticeable changes in the adjacent motion
transition will occur. Complusion-Code produces a slight
change in the transition. There is some semantic mismatch
in TEACH [6] and abrupt transitions in the no Slerp version.

5. Conclusions and Future Works
We have advocated a novel framework for synthesiz-

ing semantic motion sequences driven by sequential texts
while ensuring natural transitions between adjacent mo-
tions. Our approach leveraged a local-to-global semantic
fusion module and a transition reasoning module to over-

come the challenges of semantic association and transition
fluency. Extensive experiments show that our method out-
performs state-of-the-art techniques in terms of semantic
matching, transition fluency, and realism.

However, our method still has limitations, such as dif-
ficulty in synthesizing head motions like “nodding” and
“shaking head”. In future work, we plan to improve this by
exploring a way to assign different attention weights to dif-
ferent joints automatically. Additionally, since our STDM
dataset is synthesized while not captured, we will further
improve the data quality and expand the dataset scale.
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